Euclidean minima of totally real number fields: Algorithmic determination
نویسندگان
چکیده
منابع مشابه
Euclidean minima of totally real number fields: Algorithmic determination
This article deals with the determination of the Euclidean minimum M(K) of a totally real number field K of degree n ≥ 2, using techniques from the geometry of numbers. Our improvements of existing algorithms allow us to compute Euclidean minima for fields of degree 2 to 8 and small discriminants, most of which were previously unknown. Tables are given at the end of this paper.
متن کاملPerfect Forms over Totally Real Number Fields
A rational positive-definite quadratic form is perfect if it can be reconstructed from the knowledge of its minimal nonzero value m and the finite set of integral vectors v such that f(v) = m. This concept was introduced by Voronöı and later generalized by Koecher to arbitrary number fields. One knows that up to a natural “change of variables” equivalence, there are only finitely many perfect f...
متن کاملEnumeration of Totally Real Number Fields of Bounded Root Discriminant
We enumerate all totally real number fields F with root discriminant δF ≤ 14. There are 1229 such fields, each with degree [F : Q] ≤ 9. In this article, we consider the following problem. Problem 1. Given B ∈ R>0, enumerate the set NF (B) of totally real number fields F with root discriminant δF ≤ B, up to isomorphism. To solve Problem 1, for each n ∈ Z>0 we enumerate the set NF (n,B) = {F ∈ NF...
متن کاملComputing p-adic L-functions of totally real number fields
We prove new explicit formulas for the p-adic L-functions of totally real number fields and show how these formulas can be used to compute values and representations of p-adic L-functions.
متن کاملOn Shintani’s ray class invariant for totally real number fields
We introduce a ray class invariant X(C) for a totally real field, following Shintani’s work in the real quadratic case. We prove a factorization formula X(C) = X1(C) · · ·Xn(C) where each Xi(C) corresponds to a real place (Theorem 3.5). Although this factorization depends a priori on some choices (especially on a cone decomposition), we can show that it is actually independent of these choices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2007
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-07-01932-1